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The authors .found an exact analytical solution of the problems on reflected and transmitted waves in 
interaction of  a short electromagnetic pulse with a plasma laver of  finite extension. The problem is 
solved assuming the linearitv of material equations. Analytical eapressions of Green functions are ob- 
tained for the corresponding problems that allow one to write solutions for the transmitted and re- 
fiected waves with any shape of  an incident wave. The exact solutions depend substantially on the 
plasma densi~ amt layer extension, which makes it possible to use them in processing experimental 

results for extraction of the above-mentioned parameters. 

Introduction. Recent advances in laser technology have enabled the production of high-power ul- 
trashort pulses, by means of which it is possible to virtually instantly ionize thin layers of a substance. These 
can be both foils of a solid substance and gas jets injected into vacuum, so that the range of densities of 
plasmas generated turns out to be rather extensive. The properties of such plasmas are investigated by means 
of sounding pulses of low power, whose propagation can be considered in a linear regime. In diagnosing, of 
great interest is the passage of short pulses (the plasma formed must have no time to fly apart) through the thin 
layers; moreover, the carrier frequency must be close to a plasma frequency. The latter implies that dispersion 
of the waves in the plasma should be strictly taken into account. 

On the other hand, the comparatively small transverse dimension of the plasmas formed requires the 
correct consideration of  boundary conditions on both edges of the plasma spacing. The problems of interaction 
of ultrashort pulses with thin layers of a substance were investigated in [1, 2]. The present work is devoted to 
a rigorous solution of the problem concerning the passage of a short laser pulse of arbitrary shape through thin 
plasma layers. A similar problem was solved in [3] but for a semiinfinite plasma, i.e., only one boundary con- 
dition was taken into account. Taking into account the second boundary not only complicates the solution, but 
also requires the elucidation of what kind of contribution the effects of rereflections make to the transmitted 
and reflected field and what the influence of the plasma-layer extension is. 

We express the solution in terms of Green functions for the transmitted and reflected waves without 
restricting ourselves to a specific shape of the envelope of an incident pulse. In our approach, the expansion in 
terms of the so-called nonseparable solutions [4] of the wave equation naturally arises. 

Statement of the Problem. An electromagnetic pulse is incident from infinity onto a layer of homo- 
geneous isotropic plasma of finite extension. The pulse is normally incident onto the leading edge of the 
plasma (along the X axis); the electric field of the wave is linearly polarized. We consider a one-dimensional 
problem, i.e., there is no dependence of  the dielectric permeability on the transverse coordinates Y and Z. The 
plasma is described in a linear approximation and has the dielectric permeability 
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In vacuum, the fields Er(t, x) and Eout(t, x) satisfy an ordinary homogeneous  wave equation, while the 

field Et(t, x) in the plasma layer obeys the equation 

~ 1 2 ~ (2) 
~. , -  - 5  0 .  - E t (t, x) = 0 ,  

C C - )  

which follows from Maxwell  equations for a medium with dielectric permeabil i ty (1). Here we use the follow- 
ing notation: 02, and 02 are the partial derivatives of  the second order with respect to the spatial coordinate x 

and time t, respectively; mp is the plasma frequency; c is the velocity of  light in vacuum. 
The boundary conditions on the electric field follow from the continuity conditions for the electric and 

magnetic fields at both boundaries of  the layer (x = 0 and x = /) (it is assumed that surface charges and cur- 
rents are absent): 

E i (t, 0) + E r (t, 0) = E t (t, 0) , 0 ,E l  (t, 0)  + 3 , E  r (t, 0) = ~,E t (t, 0) ,  

E t ( t , / )  = Eou t (t, l) , 0 ,E t  (t, 1) = ~,Eou t (t, 1) . (3) 

At the initial instant of  time, the pulse Ei(t-  x) is incident onto the leading edge of  the plasma; the latter is in 
an unperturbed state, therefore, the initial conditions are as tollows: 

E i (0, x)  = E i (0 - x)  = E i ( -  x)  , E t (0, x) = 0 ,  ~rE) (0, x) = 0 .  (4) 

x 
Solution.  Let us pass to the dimensionless variables: rapt--+ t and m p - - - + x .  Then wave equation (2) 

c 
takes the form 

(0~, - 0~, - 1) e ,  (r, x )  = 0 .  (5)  

To solve the last differential equation, we use the Laplace operator method. Using initial conditions (4) and 
taking into account the transformation properties that refer to the original t ime derivative, we obtain an equa- 
tion equivalent to Eq. (5): 

[d~ s -  (s 2 + 1)] b7 t (s, x) = 0 .  (6) 

We represent the solution of  Eq. (6) in the form 

7g t (s, x) = Et I (s, 0) exp ( - "q  s 2 - ~  + 1 x) + E t- (s, 0) exp (~ s 2 + 1 x ) .  (7) 

On the Laplace transform, boundary conditions (3) become as follows: 

~7 i ( S , 0 ) + E r ( S , 0 ) = E t  (S, 0 ) ,  E t ( s ' l ) = ~ S o u  t ( S , / ) ,  

~a~7 i (s, 0)  + ~.~7 r (s, 0)  = ~aEt (s, 0 ) ,  ~.~Et (s, l) = ~.,~7ou t (s, 1). (8) 

Now we find the space-time dependences of  the fields that propagate in vacuum. Since the incident pulse Ei(t, 
x) moves from left to fight (in the direction to the plasma),  whereas the reflected pulse Er(t, x) moves  from 
fight to left (from the plasma),  and finally the transmitted pulse Eout(t, x) moves  to the right, we have the 
dependences 

E i (t, x) = E i (t - x ) ,  E r (t, x) = E r (t + x) , Eou t (t, x) = Eou t (t - x ) ,  (9) 

which correspond to the following wave equations: 
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(O t + 0x) E i (t, x) = 0 ,  (8, - Or) Er (t, x) = 0 ,  (St + 8x) Eout (t, x) = 0 .  (10) 

We take the Laplace transforms of  the last equations, then determine the limiting transitions x ---) 0 in the first 
two equations and x -+ 1 in the third of  them, and find expressions for the field derivatives at the boundaries: 

d,~: i (s, 0) = - sEi (s, 0 ) ,  

d , E  r (s, O) = s E  r (S, 0 ) ,  d,.Eout (s, I) = - SEou t (s, l ) .  (11) 

Substitution of  Eq. (7) into Eq. (8) with account for conditions (11) gives the solution for the transmitted wave 

4 m  Ei (s, 0 ) ,  
Eout (s, 1) (s + o02 exp (~1) - (s - a02 exp ( -  otl) 

(X = N/S2 + 1 . 
(12) 

From the third equation of  (11), it follows that 

Eout (s, x) = Eout (s, l) exp ( -  s (x - l ) ) ,  (13) 

and then 

4¢xs exp ( -  s (x - l)) Ei (s, 0) .  
kTou , (S, X) = (S + ¢X) 2 exp (¢xl) -- (s - a )  2 exp ( -  (zl) 

(14) 

To find Eout(t, x), we take the inverse Laplace transform 

+i~ 

1 I Eout (s, x) exp (st) ds Eou , (t, x) = 2~----~ 
(15) 

Using the determination 

Ei (s, 0) = I Ei ('c, 0) exp ( -  sx) dx ,  
0 

(16) 

we obtain 

Eou t (t, x) = 1 I 4(~s exp [s (t - (x - I))] I ~- . . . . . . . .  "3 - -  E i (x, 0) exp ( -  sx) dx ds.  (17) 
2rti -i= (s + oO- exp (~1) - (s - c~)- exp ( -  o~l) 0 

It is convenient to represent the solution of  the initial problem in the form of  a convolution of  the 
pulse at inlet with the Green function Gout( t-  I:, x); to do this, we perform the rearrangement of  the integration 
variables in the previous integral and introduce by definition 

+i,~ 

Gou t (t - "C, x) = 1._l._ I 4c~s exp (su) ds ,  
2rti . (s + ~)2 exp (al) - (s - c~) 2 exp ( -  od) 

(18) 

u = t -  ~ -  ( x -  1). 
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Then finally the field of the transmitted pulse can be represented in the form of the convolution 

o o  

Eou t (t, x) = f Gou t (t - "1;, x) E i (z, 0) d~. (19) 

0 

To find the field of the reflected pulse, we express Er(s, 0) from boundary conditions (8) and take into 
account Eq. (1 t): 

exp ( -  ~ 1 )  - exp (txl) Ei (s, 0 ) .  ( 2 0 )  
Er (s, 0) - (s + Ct) 2 exp (ctl) - (s - 002 exp ( -  ct/) 

From the second equation of (11) we find that 

Er (s, x) = Er (s, 0) exp (sx). (21) 

Introducing the Green function of the reflected wave 

+i~  

G r (t - "t:, x) = 1 f (exp ( -  ctl) - exp (c~/)) exp (sv) ds, 
2~i . (s + cO 2 exp (c~l) - (s - a)2 exp ( -  ~/) 

v = (t  - z + x ) ,  

(22) 

we can also represent the field Er(t, x) in the form of the convolution 

+i~ 

E r (t, x) = I Gr (t - "1;, x) E i ('~, 0) dz .  
- - i  ~ 

(23) 

The problem is reduced to taking the integrals in formulas (18) and (22). 
We will illustrate in detail the integration process for the Green function of the transmitted field 

Gout(t-x, x); for Gr(t-z, x) everything is similar. In integrals (18) and (22), the contour of integration repre- 
sents a straight line parallel to an imaginary axis. We introduce a new variable: 

w = s + ~ + l  . (24) 

The old variables s and c~ will be expressed in terms of the variable w: 

s= lw  ) 
Now the Green function Gout(t-x, x) is represented by the new integral: 

(25) 

l w _ l ~ (  w + 1 ] 2  (26) 
w)~ w ) e x p  [ 2  ( w -  1 3 u  1 

1 dw, Gou t (t - "t, x) = __1_1 I 2 -l _ 1 
2rti  w 3 e x P [ 2 ( w + l l l ] _  w e x p l  ~ ( w + l ) l  t 

where C is the new integration contour. We rewrite the first transformation in Eq. (25) in the equivalent form 

(27) is=-~ w+ ; 
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the right-hand side of Eq. (27) is a Zhukovskii function. From the form of the initial contour and the properties 
of the Zhukovskii function we obtain that the contour C is an aggregate of two beams on the imaginary axis 
(-ioo,-i), (i, ion) and of a semicircle of unity radius in the right half-plane. 

We consider the denominator of the integrand of Green function (26) 

w3exPl2Iw+lll)-w-'exp(-21w+lll 1. 
and transform it to the form 

(28) 

w3 exp (½ lw +~31][I-w-4expl-2~(w+~]l]]" 

Since on the new integration contour Iwl > 1 and 

we expand the expression in square brackets in Eq. (29) into a power series: 

(29) 

(30) 

1 - w-4 e x p / -  2 1 (w +~lw/// 

= ~k_~ [w-4expl-21(w+ll I ; (31) 

then 

Gout (t_x,x)= ~ i ~ I I exp(w_ll(w+l__ x 
2rti 2 w 4k+3 k w)k w) 

[l( ' / '  
xexp -~ W - w  u - - ~ ( 2 k + l ) /  w+ dw. (32) 

The integral over the infinitely distant circle diverges for a term of sum with k = 0; therefore, in order to close 
the contour C at infinity, we represent Gout(t-%x) in the form of the derivative of a certain function 
Gout(t-x, x) with respect to the parameter u (see Eq. (18)): 

Gou t ( t - 'c ,  x) = ~u out (t - x, x),  (33) 

where 

_ 1 +7 e x p [ L ( w - ± ] . l ×  Gout (t-'~'x)= Z 2rtil ~ -2 k2k w) J 

xexp[-l(2k+l)llw+ll]dw. (34) 

Now the integrand in Eq. (34) vanishes when Iwl ---)oo and the contour C can be closed, but in the left half- 
plane on the condition that u -  (2k + 1)I > 0; otherwise the integral vanishes, since the contour will not contain 
special features of the integrand function. 
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We try to eliminate such a complex expression of the argument in the exponential. For this, we intro- 
duct a new variable ~ and the parameter Yk: 

1 1 
- S = ~ (u +~-vk'~ (U + Yk[ 2 

y , = ( 2 k +  1) / ,  w t "-y~)' dw=a{(,7_yk).. (35) 

The argument of the exponential in Eq. (34) will be rewritten in terms of the new variable ~ and parameter 

Yk: 

then 

l(u--yk~ek(1 2_2_(u--ykl 1 (.u-ykle Id~x 
Gou~ (t - ~, x)  = 1 ~. . • + ~ I - - i  2rti?2iu+Y,. j ~+~3t/,+yk J ~tu+yk) ) 

Now we make use of the fact that exp 

then Gout(t- x, x) takes the form 

1 
Go., ( t -  x, x) = 

2~i 

x exp [-tx- - -  , :  ~4k" (37) 

I2[ah(~--~)] is the Bessel generating function 
K_ - - , . . I  

1 1 ~ ( 3 8 )  exp[-.,(~--:/l= Z cJ.,( . ,) .  
L e t ~)/ . ,=_ 

}'_ J 
C 

(~+~--3 7+ y k -~ ~u+ yt) 

x E  °'1m ("k) Z  '4k. 
m = - ~  k=O 

(39) 

Next, we integrate Eq. (39), taking into account that 

1 d~= O, n : ~ l ,  
2rci 7 

(40) 

where Y is the arbitrary closed contour that covers the point ~ = 0. As a result, we obtain the Green function 
of the reflected wave 

2k 
(u-vk') ( u-y  h 

J4k+2 (tq-) + 
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+ m  (u--Yk)~ J4k+4 (gk) ]O (u-- yk) . 
(u + y,)- ) 

Upon differentiation, we write the final expression 

(41) 

. . 2 k - I  

Gou , (t - % x) = ~ (u - Y0) + 4 ~=0E ~,u + .v~-) IU + ~ ' y k  J4k (t-l.k) - ( 2 k + l ) x  

x y~. - -  

(u - yk) 2 

(u + yk) 4 J4k+2 ([ak) -- (k + 1 ) - -  
(U - yk) 3 
(u + yl.)4 J4k+4 (btk) - 

uV~. u - Vk 
"~ - "~ d4k+l (~k) 0 (u--yk), 

~t k (u +yk) 3 ) 
(42) 

u = t - ' c + ( x - 1 ) ,  yk=(2k+ l ) l ,  ~tk= ~ .  

To find Gr(t-%x), we perform the same operations but taking into account that in this case the integration 
contour can be closed for the integrand function itself. 

The Green function of  the reflected field is as follows: 

1 

_ - ( , , + h , . )  
&~+l (vO - 

v+bk ] 
(v~_ J4k+3 (Vk) + J4k-3 (Vk) + J4k-l (Vk) 0 ( V -  bk), (43) 
(v + bk)" ~,- h~ ) 

v= t-"c + x,  b~ = 2kl , v k = ~ f v 2 - y ~ .  

Now we analyze expressions (42) and (43) and explain the physical meaning of  separate terms. The 
solutions consist of  an infinite series of  terms that describe numerous rereflections f rom both boundaries. How-  
ever, at any finite instant of  t ime the number  of  terms is finite because of  the presence of  the 0 functions. 

As expected, expression (42) for the linear medium represents a sum of  the initial pulse (the 6-func- 
tion) and of  the disturbing term (the sum over  k). The meaning of  the terms of  the disturbing term is quite 
obvious, namely, each kth term is the contribution to the transmitted pulse that appears as a result o f  the kth 
reflection from the leading and rear boundary of  the layer, during which the &function and the term with k = 
0 describe a single passage of  the initial pulse through the plasma. The terms in Eq. (43) have a similar mean-  

ing. 
Numer i ca l  I l lus t ra t ion  of  the Results ,  We apply the theory described for a particular case when the 

incident wave is a Gaussian pulse: 

E i (t, x) = exp ( -  m d (t - x)-)  cos (t.0 c (t - x ) ) .  (44) 

The parameters md and me are the measures of  the duration and carrier frequency of  the pulse, respectively. 
We consider the case of  short pulses (of 5 - 6  oscillations). The character of  the reflected and transmit- 

ted waves depends substantially on the relationship between the carrier and plasma frequencies as well as on 
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Fig. 1. T ime dependence of  the transmitted pulse Eout(t, 1) on the rear 
edge of  the plasma at incidence of  the initial pulse El(t, x)  with the pa- 
rameters (the frequency is measured in units o f  cop, the lengths are meas- 
ured in wavelengths of  the incident pulse, the amplitudes of  the fields are 
given in arbitrary units): a) carrier frequency COc = 1.1 and duration of  the 
order of  5 - 6  oscillations of  the field, the plasma thickness 1 = 2; b) pa- 
rameters COc = 1.1 and I = 10, the continuation of  the graph for large times 
is given above. 
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Fig. 2. T ime dependence of  the reflected pulse Er(t, 0) on the leading 
edge of  the plasma at incidence of the initial pulse El(t, x)  with the pa- 
rameters (for the units o f  measurement ,  see Fig. 1): a) parameters  coc = 5 
and 1 = 2; one can see the pulse that is reflected from the leading edge 
and the second pulse reflected from the rear edge; b) parameters  COc = 5 
and ! = 10. 

the plasma-spacing length. At the frequency coc---> C0p the plasma dispersion is considerable, and therefore the 
distortions o f  the pulse are significant. 

To  evaluate and analyze the solutions qualitatively, we consider some cases: 
(1) coc-  COp, 1 N 1, and l ~ 10; 
(2) coc >> cop, l - 1, and l - 10. 
Let us pass to analysis of  the results obtained. Case (1) is represented in Fig. 1 by several examples.  

As a consequence of  strong dispersion, a characteristic feature is the distortion of  the transmitted pulse and its 
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time delay relative to the initial pulse retransmitted at the point x = l. The time delay can be explained by the 
fact that the group velocity of the wave packet in the plasma is smaller than the velocity of light in vacuum. 
Further, we note that in contrast to the case of a semiinfinite layer, the effects of rereflection from both 
boundaries are manifested, which make a considerable contribution to the transmitted and reflected pulses. 

Case (2) (Fig. 2a) is characterized by a higher carrier frequency and, as a result, a smaller dispersion. 
The influence of the plasma-layer length is manifested more weakly for the reflected pulse at a layer thickness 
smaller than the extension of the initial pulse and more strongly for the opposite case (Fig. 2b). For the pulses 
passed through the plasma the rereflection effects do not contribute significantly. 

Conclusions. The interaction of the plane wave of a short electromagnetic pulse with the plasma layer 
of finite extension has been considered. It was shown that the solutions of the posed problem for the transmit- 
ted and reflected waves differ significantly from those in the case of interaction with a semiinfinite layer. This 
difference is expressed in the appearance of  rereflections at both plasma-vacuum interfaces and in a more con- 
siderable dependence of the fields on the plasma density and plasma-spacing length. 

The analytical dependence of the shape of the pulse of the transmitted and reflected waves on the in- 
dicated parameters of the plasma layer makes it possible to use the solutions obtained for evaluating the latter 
by experimental information using correlation or spectral data. 

The present work was carried out with support from the INTAS Fund (INTAS project No. 97-2018). 

N O T A T I O N  

co, cyclic frequency; top, plasma frequency; c, velocity of light in vacuum; 1, length of plasma spacing; 
variables x and t, coordinate along the X axis and time, respectively; E i, E r, and Eou t, electric fields of incident, 
reflected, and transmitted pulses; E t, electric field of the wave in a plasma layer; E i, E r, E t, and Eout, images of 
the corresponding fields in the Laplace space; Gr, Gout, Green functions of the reflected and transmitted waves, 
respectively; J,,,, Bessel function of the mth order; 5, Dirac delta-function; 0, Heaviside function; to o and toc, 
measure of duration and the carrier frequency of the pulse; s, z, w, o~, ~, ~tk, Yk, vk, bk, u, and v, intermediate 
variables. Subscripts: i, incident; r, reflected; t, incoming; out, outgoing; c, carrier; d, duration; k and m, indices 
of the series numbering. 
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